本站首页 | 科协概况 | 政策法规 | 学术社团 | 学术交流 | 大学科普 | 青年科协 | 人才工作 | 科协项目 | 学术道德

 
当前位置: 本站首页>>学术活动预告>>正文

Speeds of coming down from infinity for continuous-state nonlinear branching processes
2018-04-26 21:15   审核人:

报告题目:Speeds of coming down from infinity for continuous-state nonlinear branching processes

报告人:周晓文 加拿大Concordia大学

报告时间:2018年5月4日下午5点到6点30

报告地点:数学楼145小报告厅

报告摘要:We consider a class of nonlinear continuous-state branching processes which can be obtained from spectrally positive Levy processes via Lamperti type time transform. Intuitively, they are the branching processes whose branching rates depend on the current population sizes. Such processes have been studied in Li (2016) and Li et al. (2017). A process comes down from infinity if the infinity belongs to the state space and it is an entrance boundary, i.e. starting from infinity at time 0, the process becomes finite as soon as the time is strictly positive. In this talk we further discuss the small time asymptotic behaviors of the processes. By analyzing Laplace transforms of weighted occupation times and fluctuation behaviors for spectrally positive Levy processes, we identify the speeds of coming down from infinity in different scenarios.

报告人简介:周晓文,加拿大康科迪亚大学数学与统计系终身教授和长沙理工大学特聘教授, 周晓文教授于1988年及1991年在中山大学获得本科及硕士学位,并于1999年在美国加州大学Berkeley分校获统计学博士学位。长期从事概率论与随机过程理论的研究。主要研究兴趣包括测度值随机过程,Levy过程及其应用,SPDE。论文发表在概率论领域著名期刊Annals of Probability,Probability Theory & Related Fields,Stochastic Processes & Their Applications,Journal of Applied Probability,Journal of Differential Equations,Insurance Mathematics & Economics,Electronic Journal of Probability上。

关闭窗口
· 关于举办2018年长沙市科学技术...
· 关于第十四届詹天佑铁道科学技...
· 关于推荐第七届湖南省优秀科普...
· 关于推荐第十五届湖南医学科技...
· 关于推荐2018年中华医学科技奖...
· 关于申报2018年度“中国材料研...
· 关于申报2018年长沙市“海智计...
· 关于评选第二十届中国专利奖的通知

版权所有:中南大学科学技术协会